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APPARATUS AND METHODS FOR CONTROL
OF ROBOT ACTIONS BASED ON
CORRECTIVE USER INPUTS

COPYRIGHT

A portion of the disclosure of this patent document con-
tains material that is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
files or records, but otherwise reserves all copyright rights
whatsoever.

BACKGROUND

The present disclosure relates generally to automatically
and dynamically adjusting policies for controlling robot
actions based on inputs from users identifying a requested
correction of a performed robot action.

Robots have the capacity to perform a broad range of useful
tasks, such as factory automation, cleaning, delivery, assistive
care, environmental monitoring and entertainment. Enabling
a robot to perform a new task in a new environment typically
requires a large amount of new software to be written, often
by ateam of experts. It would be valuable if future technology
could empower people, who may have limited or no under-
standing of software coding, to train robots to perform custom
tasks. This would allow individual robots to be more flexible.
It would also enable a suite of custom behaviors to be avail-
able at a low price point, which were previously prohibitive
due to the limited availability and high costs of robotics
experts.

SUMMARY

Some implementations of the present invention provide
methods and systems that respond to users’ corrective com-
mands to generate and refine a policy for determining appro-
priate actions based on sensor-data input. Initially the system
is responsive to a users’ commands via an interface, enabling
direct control of a robot’s actions. The system learns to asso-
ciate the commands the user provides with the robot’s sensory
context. The learning enables the system to make a prediction
of what it should do, even if the user does not issue a com-
mand. The system learns continually and progressively. Dur-
ing the learning process, the system issues commands which
are enacted, but may be overruled or modified by the users’
corrective commands. A corrective command informs the
system of an action that could have been performed better.
The system learns quickly because it focuses on the actions
that are relevant to a given task, as well as the actions that
could be most improved by the current policy. Upon comple-
tion of learning, the system can generate control commands
by deriving them from the sensory data. Using the learned
control policy, the robot can behave autonomously.

To provide a qualitative sense for how the system may use
a corrective command, we could imagine the robot thinking,
“The action I was going to take was not the best choice; rather
the action indicated by the user was better.” Or more gener-
ally, “Whatever | was doing when I got the last correction
should be more like what the user instructed me to do.” These
explicit propositions need not be included anywhere within
the learning algorithm, but they may facilitate the reader’s
understanding of the kinds of operations the system will
perform to update the control policy.
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Consider an implementation of the invention applied to a
robot that has the task of removing leaves from a swimming
pool. The robot has a camera, a leaf scoop, and the ability to
move forward, backwards or turn in any direction. The task of
the robot is to know what motor output to provide, given the
robot’s current state and the sensory information that is avail-
able from the camera. However, the appearance of a leaf may
vary dramatically from one poolto the next, depending on the
kind of leaf, the time of day, the color of the paint on the floor,
the presence of a patterned wall, etc. The system is responsive
to the users’ commands, such as turning around when there
are no leaves in front of it, or to accelerating and turning to the
left when there is a leaf to the front and left of the robot. When
the system receives these commands, it has access to the
sensory input from the camera that includes the appearance of
the leaf in that context, including the lighting, the back-
ground, etc. The robot then can learn the visual features that
consistently predict the enacted corrected commands. By
learning, the system can generate a control policy for scoop-
ing up leaves from the pool, relying entirely on the users’
commands and its sensory experience. The system can learn
to perform a desired task for a user without relying on addi-
tional software to be written. The system naturally prioritizes
fixing the kinds of control errors that are most likely to occur
because it rapidly incorporates adjustments from the user, as
errors occur (e.g. to turn more sharply left right now). Con-
sider a moment when the robot is navigating forward, and
turning slowly to the left. A user may recognize that the
current action generated by the control policy is mostly a
sound strategy, but that the robot should turn a bit faster in
order to reach the desired floating leaf. The user may provide
a corrective command via the user interface, informing the
system to slightly rotate the robot counter-clockwise. Not
only does the system enact the corrected command, but it also
changes what the robot will do in future situations. In other
words, using the system we describe, a robot is able to
dynamically adjust its control policy based on the corrective
commands of the user.

In some implementations, the system may be present on a
robot that already contains a well-defined control policy. In
such a system, the control policy may work automatically (for
certain tasks, in certain environments) without any user inter-
action. However, if the user identifies a problem, there exists
ameans for the user to fix it because the system is responsive
to corrective commands.

One aspect of the disclosure relates to a method for con-
trolling actions of robots, the method comprising: identify-
ing, at a device that includes a processor, a first context-
variable value for a context variable detected by a robot at a
sensory-detection time; accessing, at the device, a policy that
maps the context variable to a robot action variable; deter-
mining that a first robot action characterized by a first value of
the robot action variable was performed at an action time in
response to detection of the first context-variable value, the
first robot action being in accordance with application of the
policy; determining that a user input was received at an input
time corresponding to the action time, wherein user input data
derived from the user input at least partly defines a corrective
command that specifies a corrective robot action for physical
performance, and the user input being indicative of at least
partial dissatisfaction with the robot action; modifying the
policy based on the correction command and the context-
variable value; and causing the modified policy to be used to
determine a second value of the robot action variable based on
a second context-variable value for the context variable
detected at a second sensory-detection time; and initiate per-
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formance of a second robot action performance in accordance
with the second value of the action variable.

In some implementations, the method may comprise: iden-
tifying a third context-variable value for the context variable,
the third context-variable value being detected at a third sen-
sory-detection time that is after the before the third sensory-
detection time; determining that the robot performed a third
action in response to the third context-variable value, the third
action be in accordance with application of the accessed
policy; and inferring that the third action was satisfactory
based on a lack of input data at least partly defining a correc-
tion command corresponding to the third action. The modi-
fication of the policy may be based on the third context-
variable value.

In some implementations, the method may comprise: iden-
tifying initial user input data derived from an initial user input
received, the initial user input data at least partly defining a
command that specifies an initial robot action for a robot to
physically perform; identifying an initial context-variable
value for a context variable detected by the robot at an initial
sensory-detection time that corresponds to the initial input
time; and determining the accessed policy based on the com-
mand and the first context-variable value for the context vari-
able.

In some implementations, the method may comprise:
determining the first value of the robot action variable based
on the first context-variable value for the context variable; and
initiating the robot action in accordance with the first value of
the robot action variable.

In some implementations, the policy may be modified
using a learning model.

In some implementations, the corrective action may be
indicative of a magnitude of action.

In some implementations, the robot may include the device
and a motor used to perform at least part of the first robot
action or the second robot action.

In some implementations, the user input may include input
received at an interface at a user device remote from the robot.

Another aspect of the disclosure relates to a system, com-
prising: one or more data processors; and a non-transitory
computer readable storage medium containing instructions
which when executed on the one or more data processors,
cause the processor to perform operations. Those operations
may include: identifying a first context-variable value for a
context variable detected by a robot at a sensory-detection
time; accessing a policy that maps the context variable to a
robot action variable; determining that a robot action charac-
terized by a first value of the robot action variable was per-
formed at an action time in response to detection of the first
context-variable value, the first robot action being in accor-
dance with application of the policy; determining that a user
input was received at an input time corresponding to the
action time, wherein user input data derived from the user
input at least partly defines a corrective command that speci-
fies a corrective robot action for physical performance, and
the user input being indicative of at least partial dissatisfac-
tion with the robot action; modifying the policy based on the
correction command and the context-variable value; and
causing the modified policy to be used to determine a second
value of the robot action variable based on a second context-
variable value for the context variable detected at a second
sensory-detection time; and initiate performance of a second
robot action performance in accordance with the second value
of the action variable.

In some implementations, the operations may comprise:
identifying a third context-variable value for the context vari-
able, the third context-variable value being detected at a third
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sensory-detection time that is after the before the third sen-
sory-detection time; determining that the robot performed a
third action in response to the third context-variable value, the
third action be in accordance with application of the accessed
policy; and inferring that the third action was satisfactory
based on a lack of input data at least partly defining a correc-
tion command corresponding to the third action. The modi-
fication of the policy may be based on the third context-
variable value.

In some implementations, the operations may comprise:
identifying initial user input data derived from an initial user
input received, the initial user input data at least partly defin-
ing a command that specifies an initial robot action for a robot
to physically perform; identifying an initial context-variable
value for a context variable detected by the robot at an initial
sensory-detection time that corresponds to the initial input
time; and determining the accessed policy based on the com-
mand and the first context-variable value for the context vari-
able.

In some implementations, the operations may comprise:
determining the first value of the robot action variable based
on the first context-variable value for the context variable; and
initiating the robot action in accordance with the first value of
the robot action variable.

In some implementations, the policy may be modified
using a learning model.

In some implementations, the corrective action may be
indicative of a magnitude of action.

In some implementations, the robot may include the com-
puting system and a motor used to perform at least part of the
first robot action or the second robot action.

In some implementations, the user input may include input
received at an interface at a user device remote from the
computing system.

Yet another aspect of the disclosure relates to a computer-
program product tangibly embodied in a non-transitory
machine-readable storage medium, including instructions
configured to cause one or more data processors to perform
operations. Those operations may include: identifying a first
context-variable value for a context variable detected by a
robot at a sensory-detection time; accessing a policy that
maps the context variable to a robot action variable; deter-
mining that a robot action characterized by a first value of the
robot action variable was performed at an action time in
response to detection of the first context-variable value, the
first robot action being in accordance with application of the
policy; determining that a user input was received at an input
time corresponding to the action time, wherein user input data
derived from the user input at least partly defines a corrective
command that specifies a corrective robot action for physical
performance, and the user input being indicative of at least
partial dissatisfaction with the robot action; modifying the
policy based on the correction command and the context-
variable value; and causing the modified policy to be used to
determine a second value of the robot action variable based on
a second context-variable value for the context variable
detected at a second sensory-detection time; and initiate per-
formance of'a second robot action performance in accordance
with the second value of the action variable.

In some implementations, the operations may comprise:
identifying a third context-variable value for the context vari-
able, the third context-variable value being detected at a third
sensory-detection time that is after the before the third sen-
sory-detection time; determining that the robot performed a
third action in response to the third context-variable value, the
third action be in accordance with application of the accessed
policy; and inferring that the third action was satisfactory
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based on a lack of input data at least partly defining a correc-
tion command corresponding to the third action. The modi-
fication of the policy may be based on the third context-
variable value.

In some implementations, the operations may comprise:
identifying initial user input data derived from an initial user
input received, the initial user input data at least partly defin-
ing a command that specifies an initial robot action for a robot
to physically perform; identifying an initial context-variable
value for a context variable detected by the robot at an initial
sensory-detection time that corresponds to the initial input
time; and determining the accessed policy based on the com-
mand and the first context-variable value for the context vari-
able.

In some implementations, the operations may comprise:
determining the first value of the robot action variable based
on the first context-variable value for the context variable; and
initiating the robot action in accordance with the first value of
the robot action variable.

The following detailed description together with the
accompanying drawings will provide a better understanding
of the nature and advantages of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B show a user device wirelessly commu-
nicating with a robot according to some implementations of
the present invention.

FIG. 2 is a simplified block diagram of a robot according to
an implementation of the present invention.

FIG. 3 is a simplified block diagram of an electronic device
in communication with a robot according to an implementa-
tion of the present invention.

FIG. 4 is a flow diagram of a process for generating a robot
sensory-response policy using sensor data and user actions
(or lack thereof) according to an implementation of the
present invention.

FIG. 5 is a flow diagram of a process for processing sensor
data using a policy to determine an appropriate robot response
according to an implementation of the present invention.

FIG. 6 is a flow diagram of a process for evaluating a robot
sensory-response policy for possible modification according
to an implementation of the present invention.

FIG. 7 is a flow diagram of a process for identifying a target
action for a robot based on presence or absence of a user
corrective command according to an implementation of the
present invention.

FIG. 8 is a flow diagram of a process for defining a policy
using basis sets according to an implementation of the present
invention.

DETAILED DESCRIPTION

In some implementations, a policy is generated that con-
trols how a robot is to perform a task by performing one or
more actions (e.g., in response to specific sensor data). In
some instances, a policy refinement can be made based on
receipt of a corrective command. For example, a robot can
respond to specific sensor data with a specific initial motor
action. A corrective command can be received from a user that
specifies an additional action or adjustment. Because task
performance frequently involves an ongoing sensory motor
loop, the robot can perform a corrective action in accordance
with the corrective command. Further, an existing policy that
led the robot to perform the initial specific motor action can be
adjusted to bias it towards responding to the specific sensor
data by performing an action corresponding to a net of the
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initial action and the corrective action. Thus, the policy used
by the robot can be learned, often iteratively, by continued
interactions with the user.

FIG. 1A shows a user 105 using a user device 110 to
communicate with a robot 115 according to an implementa-
tion of the invention. User device 110 and robot 115 can
communicate over a network 120, which can include a wire-
less network, such as a short-range (e.g., Bluetooth network),
a WiFi network or the Internet. User device 110 can include
an electronic device (e.g., a mobile electronic device), such as
a computer (e.g., tablet, laptop or personal computer), smart
phone or other electronic device.

Robot 115 can include a machine configured to perform
one or more actions (e.g., motor actions). The actions can be
performed automatically and/or in response to sensor input.
The action can include, e.g., an angular or translational move-
ment of part or all of robot 115. For example, in FIG. 1A,
robot 115 can respond to a verbal command by moving to a
location (e.g., moving to a user in response to “Come here”,
moving towards a charging location in response to “Go
home”, moving towards a door in response to a doorbell).
This task can include recognizing an audio signature, identi-
fying a destination location, determining a path to the desti-
nation location and avoiding obstructions along the path.
Thus, this task can include processing sensor data (e.g., col-
lected by one or more sensors on robot 115), such as sensor
data collected by a microphone and/or camera.

This onboard learning has the advantage of allowing a
control policy to be rapidly updated and deployed. Offboard
learning may require transferring data to a remote location,
keeping state synchronized, updating a policy and returning
theupdated policy. These processes can incur communication
latencies, consume power, or risk state de-synchronization.
On the other hand, if a new policy can be generated locally
(e.g. by updating a subset of onboard memory representing
policy parameters), then time and energy can be saved, and
there is no risk of desynchronizing state. Together, exploiting
the low power and fast processing, it becomes feasible for a
robotic system to learn continuously from sensory data.

A sensory-motor control policy can include a mapping
from sensory data to proposed action, which can indicate
which action is to be performed by robot 115 given a particu-
lar circumstance (or sensor-data measurement(s)). The map-
ping can be generated and/or refined based on user input (e.g.,
received at an interface of user device 110). In one instance
(e.g., during a training phase or after a robot has not
responded to sensory data), an initial policy is identified.
There are many ways that such an initial control policy may
be determined. For example, the initial policy may be deter-
mined by a preconfigured feedback controller (e.g. a Kalman
filter), a policy learned in a virtual world (e.g. via reinforce-
ment leaning or a genetic algorithm), a set of if-then instruc-
tions (e.g. an expert system), a cost function (e.g. via a model-
based variational search), or some algorithm coded by a third-
party. An initial policy may be loaded from a policy
previously saved by a different user, potentially from a dif-
ferent environment and a different task, though likely related.
An initial policy may be a random policy, which might be
strange at first, but may help with learning. An initial policy
may even indicate to do nothing until instructed.

A control policy can include one or more of a variety of
structures that serve to map one or more sensory features
(typically a set of time-varying values) to one or more motor
features (typically a set of time varying values). For example,
a structure of all or part of a policy can include, e.g., one or
more if-then functions, feature weights, transformations and/
or cluster assignments. In the example in FIG. 1A, sensory
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features may be values of depth detected by a range sensor
and spectral-component amplitudes based on microphone
data, and motor features may indicate velocity commands
sent to the left and right wheels.

Within a structure of a policy, in some instances, a sensory
feature can be arranged in a hierarchy and a motor feature can
be arranged in a hierarchy. Hierarchies may be designed by
experts (e.g., a selection of parameters chosen by an expert
via an API) or learned by experience (e.g., an automated
process that uses previous sensory motor experience to select
parameters of a hierarchy). Hierarchies can be used to span
longer timescales, and decompose and reassemble the com-
binations of re-occurring primitives.

Motor control may be structured hierarchically. For
example, the bottom of a motor hierarchy may involve the
placement and balancing of a legged-robot’s foot, the next
level may involve the sequencing of footsteps to establish a
gait; the next level may involve the selection of a trajectory
towards a desired location. Collectively, we may refer to the
entire process of sequencing footsteps for navigation as
“motor planning”, with raw motor commands provided at the
bottom (e.g., the forces to motors; each unitary action may
occur quickly, e.g., every 10 ms) and more abstract com-
mands at the top (e.g. the selection of a new target location;
each action cycle may occur slower, e.g., every 10 seconds).
A single layer in a hierarchy may include an input-output
mapping (e.g., from the layer below to the layer above, and/or
from the layer above to the layer below), a internal transform
(e.g., representing the impact of the previous state on the next
state in a sequence), a decoding transform (e.g., indicating to
the user what the current state means), and an encoding trans-
form (e.g., enabling a user to provide corrective commands at
that level of the hierarchy). Each mapping or transform may
be learned from previous experience (e.g., iteratively com-
posed by corrective commands, or fit to minimize the error of
a cost function upon previous experience).

Sensory processing may be structured hierarchically. For
example, the bottom of a visual hierarchy may involve the
detection of local visual features (e.g. contrast edges, image
patches, simple translations), the next level may involve the
re-occurring relationships of components (e.g. objects,
motion transforms), the next level may involve the represen-
tation of scenes and event types within the scene. Collec-
tively, we may refer to the entire process of recognizing the
properties of objects and events within a scene as “sensory
processing,” with raw sensory data provided at the bottom
(e.g. pixels from video streams, audio from microphone; each
unitary processed sample may occur quickly, e.g. every 1 ms
or every 40 ms), and more abstract sensory representations at
the top (e.g. that the location is a living room, that the subject
is smiling, that the subject is waving; each unitary event may
persist, e.g., awave for seconds, a location for hours). A single
layer in a sensory hierarchy may include an input-output
mapping, (e.g., from the layer below to the layer above,
and/or from the layer above to the layer below), and a decod-
ing transform (e.g., indicating to the user what the current
sensory state means). Each mapping or transform can be
learned from previous experience (e.g., constructed by unsu-
pervised learning algorithm) or other methods.

A sensory-motor control policy can include a mapping
from sensory data to proposed action, which can indicate
which action is to be performed by robot 115 given a particu-
lar circumstance (e.g. given the sensory state and the robot’s
internal state). To illustrate, in FIG. 1A, an initial control
policy (which may contain parameters and variable part of the
robots internal state) can indicate that robot 115 is to remain
stationary. When the user provides the first command
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received at user device 110 to move forward, robot 115 will
begin to move forward. Sensor data (e.g., from a camera
indicating the absence of objects in front of the robot) col-
lected before receipt of the command can be associated with
the move-forward action, and the initial control policy can be
revised based on the association. Though this revision can be
quickly performed and can affect the current action, the
resulting policy may be too crude for future contexts. For
example, the revised policy can indicate that robot 115 is to
continue to move forward indefinitely. However, because user
105 is present, she will likely provide a command at user
device 110 to turn or stop at some point (e.g., before colliding
with a wall). The policy can then be accordingly further
revised. In time, due to the presence of corrective commands,
the policy can learn that moving forward should not be
applied in all contexts, as other circumstances will require,
stopping, turning, backing up, etc.

The initial control policy can be revised and/or refined
using one or more corrective commands provided by user 105
(e.g., via user device 110). The corrective command can be
received after a robot has performed an initial action and can
specify an additional “corrective” action that the robot is to
perform, such that the combination of the initial action and
the corrective action result in a presumed desired action. In
this manner, the mapping can be routinely and iteratively
refined.

In some implementations, policy revisions can be alterna-
tively or additionally influenced by a lack of corrective com-
mands. Such an absence can provide a basis for an inference
that a user approved that a performed action was appropriate
given a situation (e.g., sensor data). Thus, a real-time or
subsequent revision can be made to bias towards the same
action in response to similar or same sensor data. In some
instances, an indication that user 105 is present (e.g., near
robot 115 and/or using device 110) can influence whether
and/or to what extent the inference (that the action was
acceptable) is made, and thus, whether and/or to what extent
a policy revision is based on an association between the
corresponding sensor data and performed action. An indica-
tion of user presence can include, e.g., interaction with user
device 110, detection by robot 115 of movement, detection of
movement of user device 110, detection that user device 110
is near robot 115, detection that user device 110 is in an active
state (e.g., versus a sleep state), etc.

Inanother implementation, select sensory data (e.g. a facial
expression, or hand gesture, or body pose, captured from a
camera onboard the robot, or a remote camera streaming user
images) can be treated as a corrective command. Sensory data
equivalent to a corrective command can be learned by the
robot from ongoing experience, or can by trained during a
pairing procedure where the sensory data equivalent (e.g. a
hand gesture) is synchronized by the user with corrective
commands from another interface (e.g. remote control, a key-
board, a mouse). By this means, the same system of corrective
commands, explicitly coded to one interface (e.g. keyboard),
can be applied to a novel and custom set of commands (e.g.
gestures and poses of body or hand). It can also be appreci-
ated, that a robot exhibiting a rich set of known behaviors
(e.g., cyclic reaching trajectories) can also be temporally
paired with a custom set of user actions (e.g., eye move-
ments), enabling an intuitive interface of for subsequent cor-
rective commands. (e.g., looking at a target location and
pressing a button may constitute a corrective command for a
robot’s arm to obtain a particular position).

It will also be appreciated that user input can include affir-
mative approval of an action. A real-time or subsequent policy
revision can then be made to bias towards the same action in
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response to similar or same sensor data. This bias can be
greater than or the same as a bias based on an inferred
approval.

Revising or refining the control policy can include, e.g.,
modifying one or more weights (e.g., a weight of'a connection
between multiple nodes) for the control policy; adding, modi-
fying or removing a function (e.g., an if-then function or part
orall ofa cost function) or node for the control policy; adding,
modifying or removing a constraint (e.g., a constraint on a
number of motion-type clusters, a constraint on the commu-
nication bandwidth of a component, or a constraints on the
sparseness of a representation); a time-scale of a persistence
of a learned component; modifying or replacing the function
of a component (e.g. by updating the microcode evaluated
within a node, or updating a parameter that determines the
node’s response); by modifying the process of refining the
policy (e.g. by increasing or decreasing the learning rate to
some or all components), etc.

This iterative refinement of a control policy based on cor-
rective commands is incredibly powerful tool for a robot
learning new behaviors, because it allows every-day users to
shape the operation of a robot (e.g., rather than requiring
intervention of a software expert). Because corrective com-
mands can be intuitive (e.g. telling the robot what you want it
to do when it looks like it might make a mistake), a broad
range of people have the requisite skills to provide commands
shaping performance of novel behaviors. In other systems,
training can be tedious, relying on thousands of micro-in-
structions. Complex behaviors can be insurmountable. By
iteratively training the control policy, users can create
increasingly complex behaviors, focusing on one attribute at
a time.

Revisions of a control policy based on corrective com-
mands automatically hone in on errors. The user interface
provides the user a means to modify the robots action at any
moment. Alternative methods may require a more conserva-
tive learning process, with smaller changes in the control
policy, or changes that apply only to very narrow contexts.
The presence of a user, with a continuous connection to the
robots actions during learning, can mitigate the consequence
of false positives. Thus, the continuous connection to the user
enables the learning process to generalize more aggressively,
both with a faster rate of policy change and a broader appli-
cation of context for each learning incident. As a result, the
entire learning process can be sped up.

FIG. 1B shows a user 105 using a user device 110 to
communicate with a robot 115 according to another imple-
mentation of the invention. FIG. 1B illustrates possible direct
and indirect communication channels between user device
110 and robot 120.

FIG. 1B illustrates an implementation where user device
110 can communicate directly with robot 115 (e.g., via a
short-range connection 120a, such as, a Bluetooth or BT-LE
connection) and/or can communicate indirectly with robot
115, using a WiFi network 1205. Thus, e.g., a command (e.g.,
a corrective command) can be transmitted to a local or remote
policy-maintenance system 125. Policy-maintenance system
125 then determines an appropriate action for robot 115 to
perform and/or generate or revise a command policy. Policy-
maintenance system 125 can then send action instructions
and/or the policy to robot 115. In one instance, a command is
transmitted both to robot 115 (e.g., to initiate a corresponding
action) and to policy-maintenance system 125 (e.g., for pos-
sible control-policy refinement).

This indirect communication channel can produce advan-
tages such as cross-robot policy definitions or modifications,
expanded sensor-data processing, remote backup, distribu-
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tion of algorithms, network testing services, telepresence
robotic viewing and control, and massively multiplayer aug-
mented reality robotic gaming. It will be appreciated that
some implementations of the invention do not utilize aremote
system and are instead focused on direct device-to-robot
communications.

FIG. 1B further illustrates that robot 115 can have a variety
of forms and/or motion capabilities. In FIG. 1B, robot 115 is
not itself configured to propel its entire self. Rather, robot 115
includes a moveable arm with a pincher that can clasp onto
objects. Thus, robot 115 can be configured to pick up and
move an object.

It will be appreciated that the robots depicted in FIGS. 1A
and 1B are exemplary, and a robot can have a variety of
features and/or operation capabilities. For example, a robot
can include a crane that is capable of rotational and transla-
tional movement. In one implementation, a translational
movement in a height dimension can be manually control-
lable (e.g., and not specified by a control policy), though an
angular position (relative to an axis perpendicular to ground)
of the crane’s arm can be defined based on an output of a
control policy that receives sensory data from a camera with
an aerial viewpoint.

As another example, a robot can include a nail gun to inject
nails at regular intervals along the length of a plank, based on
the sensory data of optic flow, accelerometers, wheel rota-
tions, time intervals, pressure sensor, depth sensors, and user
commands (e.g. to locomote, steer, stop, inject nails, return to
power supply, and return to nail supply).

As another implementation, a robot includes a toy or real
vehicle (e.g., a car) with steering, acceleration and/or braking
controls. Commands can be received via an interface in the
vehicle itself or via a remote control. The commands can be
used along with camera and/or sonar sensor data to develop a
policy to avoiding colliding with walls or obstacles.

Other examples of robots and actions that can be defined
based on control policies generated using user commands and
sensor data (e.g., from a camera, microphone, pressure sensor
or other sensor) include:

A robotic arm (e.g., with multiple degrees of freedom):

touching a location marked by a laser pointer.

A robotic submarine: following an underwater pipe and
collecting inspection data at areas with particular visual
characteristics or at times corresponding to user input
identifying interest.

A pool toy: following and tagging a swimmer as part of a
game.

An interactive robot (e.g., with gesture and/or speech capa-
bilities): engaging pedestrians (e.g., through gestures or
speech) who pass by.

A welding robot: welding a seam between adjoining sur-
face, or along a marked line.

A maintenance robot: mowing a lawn, painting a region, or
cleaning a surface.

A produce-picking robot (e.g., with the ability to pinch
produce with a varying degree of force and remove it
from a branch, vine or stem): picking fruits or veg-
etables.

A security robot (e.g., to explore within a boundary and
report and categorize observations of changes to the
environment)

Home automation system (e.g., where behavioral outputs
are adjustments to temperature, lighting, window
shades, ventilation flow, music volume)

FIG. 2 is a simplified block diagram of a robot 200 (e.g.,

implementing robot 115) according to an implementation of
the present invention. Robot 200 can include processing sub-
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system 202, storage subsystem 204, user interface 206, RF
interface 208, connector interface 210, power subsystem 212,
environmental sensors 214, controller 216, and motor effec-
tors 218. Robot 200 need not include each shown component
and/or can also include other components (not explicitly
shown).

Storage subsystem 204 can be implemented, e.g., using
magnetic storage media, flash memory, other semiconductor
memory (e.g., DRAM, SRAM), or any other non-transitory
storage medium, or a combination of media, and can include
volatile and/or non-volatile media. In some implementations,
storage subsystem 404 can store a robot controller code 222
(which can be part of an operating system of the robot, part of
an app or separate as desired). Robot controller code 222 can
be configured such that execution of the code causes robot
200 to collect appropriate sensor data and evaluate the sensor
data using a generated or stored sensory-response policy 224
to determine an appropriate response action. Execution of
robot controller code 222 can further cause robot 200 to
perform the determined action and monitor for any indication
as to whether the action was appropriate. For example, the
robot may monitor for a communication from a user device
including a corrective command, thereby indicating that the
action was not satisfactory. Execution of robot controller
code 222 can further cause robot 200 to routinely assess
policy 224 and modify policy 224 when a modification crite-
rion (e.g., a detection of a corrective command) is satisfied.
Execution of the code can further cause detected sensor data,
identifications of performed robot actions and/or identifica-
tions of user-satisfaction responses (e.g., corrective com-
mands) to be stored in a sensor/action/input data store 226.

Processing subsystem 202 can be implemented as one or
more integrated circuits, e.g., one or more single-core or
multi-core microprocessors or microcontrollers, examples of
which are known in the art. In operation, processing system
202 can control the operation of robot 200. In various imple-
mentations, processing subsystem 204 can execute a variety
of programs in response to program code and can maintain
multiple concurrently executing programs or processes. At
any given time, some or all of the program code to be executed
can be resident in processing subsystem 202 and/or in storage
media such as storage subsystem 204.

Through suitable programming, processing subsystem 202
can provide various functionality for robot 200. For example,
in some implementations, processing subsystem 202 can
execute robot controller code 222 to thereby, e.g., control
collection of sensor data, evaluate of the sensor data (using a
sensory-response policy) to identify a robot-response action,
initiate performance of the response action, and/or evaluate of
the sensory-response policy based on any identifications of
user response to the performed action. In some implementa-
tions, some or all of the code can operate locally to robot 200.

In some instances, robot 200 includes a user interface 206,
which can include any combination of input and output
devices. A user can operate input devices of user interface 206
to invoke the functionality of interface robot 200 and can
view, hear, and/or otherwise experience output from robot
200 via output devices of user interface 206. Examples of
output devices include display 232 and speakers 234.
Examples of input devices include microphone 236 and touch
sensor 238.

Display 232 can be implemented using compact display
technologies, e.g., LCD (liquid crystal display), LED (light-
emitting diode), OLED (organic light-emitting diode), or the
like. In some implementations, display 232 can incorporate a
flexible display element or curved-glass display element,
allowing it to conform to a desired shape. One or more speak-
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ers 234 can be provided using any technology capable of
converting electronic signals into audible sound waves.
Speakers 234 can be used to produce tones (e.g., beeping or
ringing) and/or speech.

Examples of input devices include microphone 236 and
touch sensor 238. Microphone 236 can include any device
that converts sound waves into electronic signals. In some
implementations, microphone 236 can be sufficiently sensi-
tive to provide a representation of specific words spoken by a
user; in other implementations, microphone 236 can be
usable to provide indications of general ambient sound levels
without necessarily providing a high-quality electronic rep-
resentation of specific sounds.

Touch sensor 238 can include, e.g., a capacitive sensor
array with the ability to localize contacts to a particular point
or region on the surface of the sensor and in some instances,
the ability to distinguish multiple simultaneous contacts. In
some implementations, touch sensor 238 can be overlaid over
display 232 to provide a touchscreen interface, and process-
ing subsystem 504 can translate touch events into specific
user inputs depending on what is currently displayed on dis-
play 232.

It will be appreciated that one or more components of user
interface 206 (e.g., microphone 236 and/or touch sensor 238)
can also serve as an environmental sensor 218. Further, it will
be appreciated that, in some instances, data (e.g., including
touch or speech data) received at an input device of user
interface 206 can be considered as environmental data to be
evaluated, e.g., using a sensory-response policy to identify an
appropriate response action.

RF (radio frequency) interface 208 can allow robot 200 to
communicate wirelessly with various interface devices. RF
interface 208 can include RF transceiver components such as
an antenna and supporting circuitry to enable data communi-
cation over a wireless medium, e.g., using Wi-Fi (IEEE
802.11 family standards), Bluetooth® (a family of standards
promulgated by Bluetooth SIG, Inc.), or other protocols for
wireless data communication. In some implementations, RF
interface 208 can implement a short-range sensor (e.g., Blue-
tooth or BLTE) proximity sensor 240 that supports proximity
detection through an estimation of signal strength and/or
other protocols for determining proximity to another elec-
tronic device. In some implementations, RF interface 208 can
provide near-field communication (“NFC”) capability, e.g.,
implementing the ISO/IEC 18092 standards or the like; NFC
can support wireless data exchange between devices over a
very short range (e.g., 20 centimeters or less). RF interface
208 can be implemented using a combination of hardware
(e.g., driver circuits, antennas, modulators/demodulators,
encoders/decoders, and other analog and/or digital signal
processing circuits) and software components. Multiple dif-
ferent wireless communication protocols and associated
hardware can be incorporated into RF interface 208.

Connector interface 210 can allow robot 200 to communi-
cate with various interface devices via a wired communica-
tion path, e.g., using Universal Serial Bus (USB), universal
asynchronous receiver/transmitter (UART), or other proto-
cols for wired data communication. In some implementa-
tions, connector interface 210 can provide one or more power
ports, allowing robot 200 to receive power, e.g., to charge an
internal battery or provide power for motors. For example,
connector interface 210 can include a connector such as a
USB host connector, a USB Host/Device on-the-go, a multi-
pin direct board-to-board connection (e.g. 25 pin, 80 pin, 256
pin, etc.), HDMI video output channel, multi-channel audio
output (e.g. 6 channels), multiple GPIO (e.g. 62 configurable
channels), 5V pulse outputs (e.g., one or more servo drivers,
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such as 4 or more and/or 256 or fewer servo drivers (e.g., 8
servo drivers)), pins for analog input (e.g. with A/D conver-
sion), channels for receiving radio controlled signals (e.g. via
a radio controlled receiver), DC motor output (e.g., 1-256
pulse width modulated drivers (e.g., 4 pulse width modulated
drivers) at 24V), and other sensory motor input and output
consistent with other robotic standards (e.g. Mindstorm sen-
sors and motors).

Power subsystem 212 can provide power and power man-
agement capabilities for robot 200. For example, power sub-
system 212 can include a battery 246 (e.g., a rechargeable
battery) and associated circuitry to distribute power from
battery 246 to other components of robot 200 that require
electrical power (e.g., motor effectors 218). In some imple-
mentations, power subsystem 212 can also include circuitry
operable to charge battery 246, e.g., when connector interface
210is connected to a power source. In some implementations,
power subsystem 212 can include a “wireless” charger, such
as an inductive charger, to charge battery 246 without relying
on connector interface 210. In some implementations, power
subsystem 212 can also include other power sources, such as
a solar cell, in addition to or instead of battery 246.

Environmental sensors 214 can include various electronic,
mechanical, electromechanical, optical, or other devices that
provide information related to external conditions around
robot 200. Sensors 218 in some implementations can provide
digital signals to processing subsystem 202, e.g., on a stream-
ing basis or in response to polling by processing subsystem
202 as desired. Any type and combination of environmental
sensors can be used; shown by way of example are a light
sensor 252, a motion detector 254, an inertial measurement
unit (IMU), a global positioning system (GPS) receiver 258.
Light sensor 252 might include a CMOS or CCD camera that
captures a video stream, and provides each frame for subse-
quent processing. Light sensor 252 may also include sensor
designed to pick up a particular range of electromagnetic
spectrum, such as an infrared camera, or a photodiode, or a
spectral range consistent with a paired emitted light source.
Motion sensor 254 may include based on optical flow, or a
change in the distribution of angular luminance, after
accounting for self motion. An IMU can include an acceler-
ometer 256, a gyroscope and/or a magnetometer. Information
from one or more of these IMU-included sensors can be
combined to provide information about velocity, orientation
and/or forces. GPS receiver 258 collects satellite signals from
a plurality of satellites and determines a geographical posi-
tion of the robot based on the signals. It will be appreciated
that one, more or all of the signals can alternatively be col-
lected (e.g., by another or same receiver) from other trans-
mitters, such as a WiFi transmitter.

It will be appreciated that specific environmental sensors
214 shown in FIG. 2 are illustrative. Other sensors can be
additionally or alternatively included in and/or used by robot
200. For example, such other sensors can use one or more of
a piezoelectric sensor, a contact sensor, an optic flow sensor,
a thermometer, a barometer, a potentiometer, a magnetom-
eter, a humidity sensor, a force sensor, a laser depth sensor, a
visual 3D sensor, sonar, and lidar. It will further be appreci-
ated that components of user interface 206 can additionally or
alternatively act as an environmental sensor. For example,
microphone 236, touch sensor 238, a push button, a dial, or a
joystick may be informative about the robot’s environment.

Motor effectors 218 can include one or more motors 262
and one or more drives 264. Various motors (e.g., geared
motors, stepper motors, brushless motors, servos) or linear
actuators (e.g., mechanical, hydraulic, pneumatic, electrome-
chanical, piezoelectric, etc.) or other actuators may be used as
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appropriate for the robotic task (e.g., to generate forces at
joints angles, rotate wheels, take an appropriately focused
image, tag or scan an item, etc.).

It will be appreciated that robot 200 is illustrative and that
variations and modifications are possible. For example, robot
200 can include additional components not shown in FIG. 2,
such as wheels, fluid controllers, vacuum channels, propel-
lers, grippers, collection trays, touch screens, credit card
scanners, shearing blades, dermo-tactile effector, heating ele-
ments, electromagnetic coils, etc.

It is also not required that every block in FIG. 2 be imple-
mented in a given implementation of a robot 200. For
example, in some instances, robot 200 does not include a user
interface 206.

A user device such as server 110 of FIG. 1 can be imple-
mented as an electronic device using blocks similar to those
described above (e.g., processors, storage media, user inter-
face devices, data communication interfaces, etc.) and/or
other blocks or components. FIG. 3 is a simplified block
diagram of a user device 300 (e.g., implementing user device
110 of FIG. 1) according to an implementation of the present
invention. User device 300 can include processing subsystem
302, storage subsystem 304, user interface 306, RF interface
308, a connector interface 310 and a power subsystem 312.
User device 300 can also include other components (not
explicitly shown). Many of the components user device 300
can be similar or identical to those of robot 200 of FIG. 2.

For instance, storage subsystem 304 can be generally simi-
lar to storage subsystem 204 and can include, e.g., using
magnetic storage media, flash memory, other semiconductor
memory (e.g., DRAM, SRAM), or any other non-transitory
storage medium, or a combination of media, and can include
volatile and/or non-volatile media. Like storage subsystem
204, storage subsystem 304 can be used to store data and/or
program code to be executed by processing subsystem 302.

User interface 306 can include any combination of input
and output devices. A user can operate input devices of user
interface 306 to invoke the functionality of user device 600
and can view, hear, and/or otherwise experience output from
user device 300 via output devices of user interface 606.
Examples of output devices include display 332 and speakers
334. Examples of input devices include microphone 336 and
touch sensor 338. These input and output devices can be
similar to output devices described above with reference to
FIG. 2.

Processing subsystem 302 can be implemented as one or
more integrated circuits, e.g., one or more single-core or
multi-core microprocessors or microcontrollers, examples of
which are known in the art. In operation, processing system
302 can control the operation of user device 300. In various
implementations, processing subsystem 302 can execute a
variety of programs in response to program code and can
maintain multiple concurrently executing programs or pro-
cesses. At any given time, some or all of the program code to
be executed can be resident in processing subsystem 632
and/or in storage media such as storage subsystem 304.

Through suitable programming, processing subsystem 302
can provide various functionality for server 300. For example,
in some implementations, processing subsystem 302 can
execute an operating system (OS) 321 and various applica-
tions such as a robot controller application 322. In some
implementations, some or all of these application programs
can interact with a robot, e.g., by generating messages to be
sent to the robot and/or by receiving and interpreting mes-
sages from the robot. In some implementations, some or all of
the application programs can operate locally to user device
300.
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Processing subsystem 302 can also execute robot-control-
ler code 322 (which can be part of OS 321 or separate as
desired). In some implementations, execution of robot con-
troller code 322 can cause user device 300 to receive infor-
mation from a robot. The information can include, e.g., infor-
mation pertaining to detected sensor data, an action-related
state of the robot (e.g., a graphical summary of its current
task, goals, and intentions), a non-action-related state of the
robot (e.g., a current charge) and/or an indication of what
action was recently performed.

Execution of robot controller code 322 can further provide
an interface that allows a user to provide inputs influencing
operation of robot 115. The inputs can, e.g., specify a com-
mand (e.g., turn left at 30 deg/sec) or a corrective command
(e.g., turn left 2 deg/sec faster than the current rotation) that
the robot is to perform and/or a satisfaction (e.g., a binary
satisfied/dissatisfied indication or a satisfaction level) of a
performed action. The inputs can further specify restrictions
or preferences for a control policy (e.g., including a schedule
for performance of a repeated task or to prohibit a specific
action type). The inputs can further inform robot controller
code 322 of infrastructural procedures, e.g., that aspects of
the data should be displayed or saved, e.g., that user-specified
subsets of sensor input/action data 239 (or processed versions
thereof) should be transferred to processing subsystem 302
for display or storage on a remote system. These transmis-
sions can serve as, e.g., commands for the robot to perform an
action and/or for data to be used for refinements of an existing
command policy and/or to update the ongoing signals
exchanged between processing subsystem 202 and 302.

Microphone 336 may provide an alert sound to prompt
user, e.g. for consent to perform a new task, or request the
users preference for one task over another (e.g., whether to
continue or to return to base to charge battery), or the user’s
estimate of one sensory state over another (e.g. to ask if the
current image contains a bad apple), or to request an evalua-
tion of a preceding behavior (e.g., whether packages were
well stacked on a shipping crate), or to request a threshold
adjustment for a task (e.g., to specify a threshold for how ripe
a fruit should be before being picked, with respect to a dis-
played distribution of ripeness estimates). User may view a
graphical representation of such prompts on user display 332.
User may indicate a choice via user interface 303, e.g., by
touch sensor 338, button, gesture recorded by camera, or a
vocal command encoded by microphone 336.

RF (radio frequency) interface 308 can allow user device
300 to communicate wirelessly with various other devices
and networks. RF interface 308 can include RF transceiver
components such as an antenna and supporting circuitry to
enable data communication over a wireless medium, e.g.,
using cellular voice and/or data networks, Wi-Fi (IEEE
802.11 family standards), Bluetooth® (a family of standards
promulgated by Bluetooth SIG, Inc.), or other protocols for
wireless data communication. In some implementations, RF
interface 308 can implement a Bluetooth LE (Low energy)
proximity sensor that supports proximity detection through
an estimation of signal strength and/or other protocols for
determining proximity to another electronic device. In some
implementations, RF interface 308 can provide near-field
communication (“NFC”) capability, e.g., implementing the
ISO/IEC 18092 standards or the like; NFC can support wire-
less data exchange between devices over a very short range
(e.g., 20 centimeters or less). RF interface 308 can be imple-
mented using a combination of hardware (e.g., driver circuits,
antennas, modulators/demodulators, encoders/decoders, and
other analog and/or digital signal processing circuits) and
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software components. Multiple different wireless communi-
cation protocols and associated hardware can be incorporated
into RF interface 308.

Power subsystem 312 can provide power and power man-
agement capabilities for server 600. For example, power sub-
system 312 can include a battery 340 (e.g., a rechargeable
battery) and associated circuitry to distribute power from
battery 340 to other components of user device 300 that
require electrical power. In some implementations, power
subsystem 312 can also include circuitry operable to charge
battery 346, e.g., when an electrical connector (not shown) is
connected to a power source.

It will be appreciated that user device 300 illustrative and
that variations and modifications are possible. In various
implementations, other controls or components can be pro-
vided in addition to or instead of those described above. Any
device capable of transmitting action command to another
device (e.g., robot 200 or an intermediate server) can be a user
device.

Further, while the server is described with reference to
particular blocks, it is to be understood that these blocks are
defined for convenience of description and are not intended to
imply a particular physical arrangement of component parts.
Further, the blocks need not correspond to physically distinct
components. Blocks can be configured to perform various
operations, e.g., by programming a processor or providing
appropriate control circuitry, and various blocks might or
might not be reconfigurable depending on how the initial
configuration is obtained. Implementations of the present
invention can be realized in a variety of apparatus including
electronic devices implemented using any combination of
circuitry and software. It is also not required that every block
in FIG. 3 be implemented in a given implementation of a
mobile device.

Communication between a robot and user device can be
implemented according to any communication protocol (or
combination of protocols) that both devices are programmed
or otherwise configured to use. In some instances, standard
protocols such as Bluetooth protocols can be used. In some
instances, a custom message format and syntax (including,
e.g., a set of rules for interpreting particular bytes or
sequences of bytes in a digital data transmission) can be
defined, and messages can be transmitted using standard
serial protocols such as a virtual serial port defined in certain
Bluetooth standards. Implementations of the invention are
not limited to particular protocols, and those skilled in the art
with access to the present teachings will recognize that
numerous protocols can be used.

In accordance with certain implementations of the present
invention, devices can communicate such that robot actions
are at least partly controlled by inputs received at a user
device. Thus, a user of the user device may be able to observe
a robot action (e.g., triggered based on sensory data) and
“correct” the action if needed. The correction can simulta-
neously provide an indication that the performed action was
not completely satisfactory and a specification as to what is to
be improved in that regard.

FIG. 4 is a flow diagram of a process 400 for generating a
robot sensory-response policy using sensor data and user
actions (or lack thereof) according to an implementation of
the present invention. Part or all of process 400 can be imple-
mented in a robot, a user device or a remote server. Process
400 begins at block 405 where a first portion of a sensor
stream is accessed. The sensor stream can include a stream of
data collected by an environmental sensor of a robot. For
example, the sensor stream can include a stream of video data
collected by a camera on a robot. The portion can include a
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time-series (e.g., a value for each of one or more variables at
each of a set of times) or one or more discrete variable values.
The first portion can include a portion of sensor data collected
during an explicit training session (or part thereof) or during
part of a normal operation (or mixed-mode) session. In one
instance, the first portion includes a portion of sensor data
received subsequent to a user input requesting generation of a
new policy. The first portion of the sensor data can include
sensor data collected from each of one, more or all environ-
mental sensors present on a robot.

At block 410, a user command specifying a user action is
identified. The user command can be determined based on
locally received input or based on a communication identify-
ing user input. The input can specify, e.g., whether a robot is
to act and/or specifics of any action (e.g., a movement mag-
nitude, a movement direction, a movement speed and/or a
movement force). In one instance, a robot may include mul-
tiple effectors, and a command can indicate which portion of
a robot (e.g., which effector) is to act and how.

At block 415, a policy is generated based on the first
portion of the sensor stream and the user command. The
policy can include one or more if-then functions, an algo-
rithm, a model and/or a flowchart. The policy can be struc-
tured to receive, as input, one or more variables based on
sensor data and can be structured to produce, as output, an
indication as to whether and/or how a robot is to act in
response to the sensor data.

As one example, an initial policy is or includes a default
policy. The default policy can be one that specifies that arobot
is to refrain from acting until a command is received. The
default policy can be one based on policies learned for other
robots (e.g., of a similar type associated with a same user
and/or one or more different users).

As another example, an initial policy can include one partly
or completely specified from user input. To illustrate, an
interface on a user device can identify multiple sensory data
(e.g., depictions of expected types of visual data) and can
allow a user to select from amongst a list (or continuum) of
available response actions. As yet another example, an initial
policy can be generated based on user inputs received during
a training period (e.g., identifying a satisfaction with an
action, repeatedly specifying a desired action or identifying
desired modifications to actions).

At block 420, a second portion of a sensor stream is
accessed. The first and second portion can be collected by a
same session or in different sessions. A same robot, or (in
other implementations, different robots) can collect the sen-
sor streams. The first and second portions can include at least
one, more or all of a same type of sensor data.

At block 425, a determination is made as to whether a
second user command has been received. As is described
further herein, the generated policy and second portion of the
sensor stream can be used to determine whether and/or how a
robotis to act in response to the second portion. The robot can
then act accordingly.

The second user command can include a robot instruction
indicating whether any performed action (and/or lack
thereof) was satisfactory and—if not—how it is to be cor-
rected. For example, a second user command can include a
corrective command that indicates that a robot should prolong
movement in a direction or at least partly reverse a movement.
To illustrate, a user may interact with a user device to press an
arrow or move a controller in a direction corresponding to a
desired corrective movement until a portion of the robot has
moved to a desired location. As another illustration, a user
may click on a button option representing a desired move-
ment.
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A single user command at one moment in time may indi-
cate one or more corrective attributes (e.g. to accelerate and to
turn right more). A command can be generated based on a
state of a controller of a user interface, such as the positions of
one, more or all joysticks and buttons on a gaming console; a
position of a wheel and/or a trigger state of an RC control; a
value of one, more or all joint angles and/or pressures mea-
sured by a haptic glove; one or more parameters estimated
from of a user’s body movement, hand gesture or gaze loca-
tion; a location and/or movement of the user estimated using
data collected by one or more motion capture systems, elec-
tromyograms or electroencephalograms; a touch sequence
and/or gesture history recorded by a touch screen; the physi-
cal state of the robot, as may have been repositioned by the
user; and/or a feature extracted from a video stream of the
user. Often a corrective command will contain one or more
analog values which indicate that the robot ought to change
one or more control attributes.

User inputs can correspond to action commands. A rela-
tionship between the inputs and action commands can be
pre-defined, defined by a user or learned. In some implemen-
tations, a mapping of user actions (e.g. touches, gestures,
clicks, presses, knobs turns, joystick pressures) to robotic
control attributes (e.g. rotations, velocities, joint angles,
forces, torques, location set points, speed-accuracy trade offs,
target following distances, target following azimuths) is
determined beforehand, and the values of these corrective
commands are sent in real time to the robot.

When no second user command is detected, process 400
returns to block 420, where a new second portion of a sensor
stream is accessed and monitoring continues for responsive
user commands. When a second user command is detected,
process 400 continues to block 430 where the sensor stream is
parsed to identify sensor data corresponding to the second
user command. In one instance, all sensor data in the sensor
stream (e.g., stream including data collected from one or
more sensors) within a fixed time period before the second
user command is identified as being pertinent. In one
instance, data in the sensor stream that triggered a robot
action preceding detection or receipt of the second user com-
mand is identified as being pertinent.

At block 435, the policy is refined based on the parsed
sensor stream and second user command. As will be
described in further detail herein, each of various portions of
sensor data can be associated with a target (e.g., “desired”)
action. In one instance, the target action can include one
specifically identified in a user command. In one instance, the
target action includes a combination of a performed action
and a correction action as specified based on a corrective
second user command. In one instance, the target action
includes a performed action (e.g., when no corrective com-
mand is received). These sensor-target action data sets can be
used to identify a relationship between sensor data and target
actions and thereby to define a policy.

In another instance, a distinction can be identified between
sensor data preceding a corrective command and other sensor
data. An existing policy can be modified to differentiation
between the sensor data.

FIG. 5 is a flow diagram of a process 500 for processing
sensor data using a policy to determine an appropriate robot
response according to an implementation of the present
invention. Part or all of process 500 can be implemented in a
robot, a user device or a remote server. Process 500 begins at
block 505 where data is collected from one or more sensors

At block 510, a sensory-response policy is accessed. The
sensory-response policy can include an initial policy and/or
one previously refined based on received corrective com-
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mands (or lack thereof). In some implementations, the policy
is determined by an algorithm with one or more parameters
(e.g., an artificial neural network, a random forest, a support
vector machine, a restricted Boltzmann machine, ridge
regression, etc.). The policy can include one locally stored at
a robot and/or one received from another policy-maintenance
device (e.g., a sensory-response policy 224 stored on storage
subsystem 204, as shown in FIG. 2).

At block 515, an action is determined based on the sensor
data. In some instances, sensor data is initially pre-processed
before analyzing it using the accessed sensory-response
policy. The pre-processing can include processing to reduce
or eliminate noise (e.g., to extract characteristics from an
image that are more invariant to nuisance parameters, such as
lighting and background) and/or to amplify characteristics
presumed to be indicative of relevant attributes in the envi-
ronment (e.g. an object of interest, its properties and loca-
tion). Alternately, raw sensory data map be transformed into
a collection of sensory maps (e.g., the data may be embedded
into a similarity space, such as the location in a scene with
respect to a robot’s gaze, and/or the transformation may
group similar reoccurring and co-occurring patterns),
together referred to as sensory data in block 505. In some
instances, a dimensionality of sensor data can be condensed
(e.g., using a clustering technique, component analysis or
correlation analysis). Sensory data may be transformed into a
state that facilitates learning (e.g. collections of values may be
represented as radial basis functions, either represented inde-
pendently or jointly). The pre-processing that is performed, in
some instances, is influenced by what type of data is to be
evaluated based on the accessed policy. Thus, for example, if
a policy is to identify an appropriate action based on an optic
flow of an image, the pre-processing can include determining
an image’s optic flow.

Raw and/or pre-processed sensor data can then be evalu-
ated using the policy to determine an appropriate action. The
determination can include determining, e.g.: whether any
action is to be performed, what type of action is to be per-
formed (e.g., movement of an entire robot, moving an arm of
arobot, pinching an object or releasing an object), a direction
of a movement, a magnitude and/or speed of a movement
and/or a duration of an action. The evaluation can include
selecting (e.g., an action type or value) from amongst a con-
tinuum or from amongst a discrete list.

In one instance, a policy defines a network, such as an
artificial neural network, that includes nodes, node connec-
tions (e.g., weighted connections) and/or constraints. Values
corresponding to nodes in an input layer can be set based on
raw or processed sensor-data values. Intermediate “hidden”
nodes and inter-node connection weights can be used to trans-
late these input-layer values into values for nodes in an output
layer. Nodes of the output values can correspond to discrete
actions, which can correspond to a high-level action (e.g.,
corresponding to a simultaneous or sequential set of discrete
actions) or to specific, discrete actions. It will be appreciated
that implementation of the policy need not utilize an artificial
neural network. For example, it may instead rely on, e.g., a
Bayesian model, a clustering algorithm or one or more if-then
statements.

At block 520, the robot initiates performance of the action
that was determined by the combination of the sensory data
and the control policy. For example, one or more motor effec-
tors can be activated with a speed or force that corresponds to
the determined action.

At block 525, it can be determined whether a corrective
command has been received (e.g., from a user device). This
determination can be made (in various implementations)
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while the robot is performing the action and/or after the robot
completes performance of the action and/or before the robot
initiates the action, as anticipated by a user. The corrective
command can specify a corrective action to perform. This
corrective action can include a new action to perform (e.g., to
partly or fully compensate for a previously performed action)
or an instruction to cease a current action. In some instances,
any command received (e.g., generally or after a training
period) can be interpreted as a corrective command. Thus,
even if a robot had not performed any recent action, a com-
mand can be corrective in that it instructs the robot to “cor-
rect” its inactive behavior by performing an action.

When it is determined that a corrective command was
received, process 500 continues to block 530 where the robot
performs a second action corresponding to the corrective
command. This second action can include one differing from
a current or planned action and/or partly or fully reversing the
action performed at block 520. The second action can include
one performed in place of part or all of the determined action
or in addition to part or all of the determined action. For
example, a determined action can be a 90-degree turn. While
the robot is turning, the corrective command can indicate that
the robot is to only turn 45-degrees or is to stop at a current
rotation. Thus, the robot need not complete the full 90-degree
turn.

Thus, it will be appreciated that in one instance, at block
520, a robot begins performing the determined action, but a
corrective command indicates that the action to be performed
is to differ from that determined at block 515. Thus, the robot
can dynamically adjust its action (e.g., or even inaction) to
match the corrective command. It will be appreciated that
process 500 can thus include determining a corrective action
corresponding to the corrective command, which can include
a modification of the action determined at block 515 or an
independent action.

In some instances, the corrective command is associated
with a particular initial action performance and/or particular
sensor-data variable(s). For example, the corrective com-
mand can be associated an action being performed when the
corrective command was detected or an action most recently
performed relative to the detection. The corrective command
can then further be associated with sensor-data variables used
to initially determine that action. In some instances, detection
of'the corrective command can be used as a basis for inferring
that the performed action was not satisfactory to a user. An
inference can further be made that the user instead preferred
an action equal to a sum of the performed action and the
corrective action. For example, if a robot component was
initially rotated 135 degrees counter-clockwise and a correc-
tive command indicated that the component was to rotate 45
degrees clockwise, it may be inferred that a desired action was
a 90-degree counter-clockwise rotation.

At block 535, a determination is made as to whether a
modification criterion is satisfied. The modification criterion
can be pre-defined and/or generated based on user input. The
modification criterion can indicate that a policy is to be evalu-
ated for potential modification (or to be modified) when, e.g.:
a corrective command was received, a corrective command
specified an action of an above-threshold magnitude, a
threshold number of corrective commands were received
since a prior modification, an estimated user satisfaction level
(e.g., estimated based on a number or frequency of corrective
commands, affirmative approvals and/or actions not associ-
ated with user input) is below a threshold, a threshold period
of time has passed since a recent (e.g., most recent) modifi-
cation, and/or user input specifically requests policy modifi-
cation, a user-designed context was designated for the pur-
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pose of one or more samples of paired motor states and
sensory states (e.g., a sequence of robotic body poses are
configured with respect to the sensory observation of previ-
ous poses). Thus, it will be appreciated that, in some
instances, a corrective command need not initiate policy
modification. For example, an inference or indication that a
user approved of a performed action can be used as a basis for
modifying a policy.

When it is determined that the modification criterion is
satisfied, process 500 continues to block 540 where the policy
is evaluated for modification and/or is modified. The modifi-
cation can include updating one or more parameters (e.g., a
weight, a threshold, or a constraint) in a policy and/or modi-
fying a structure in a policy (e.g., adding, removing or modi-
fying a node or connection in an artificial neural network, an
if-then statement, etc.).

The modification can be based on one or more corrective
actions, one or more inferences that a performed action was
acceptable and/or one or more affirmative approvals of an
action. In one instance, one or more sensory data variables are
identified and are associated with a target action. The target
action can be set to the initially performed action when no
user response was detected or when user input approves the
initial action. The target action can be set to a sum of a
performed action and the corrective action when a corrective
command was received. A set of these sensor-data and target-
action pairings can be determined (e.g., corresponding to a
specified number of most recently performed actions or those
actions performed since alast modification). The pairings can
then be used to modify the policy. In one instance, the pairings
can be weighted (e.g., such that a higher weight is assigned to
pairings generated based on corrective commands or affirma-
tive approvals relative to weights assigned to pairings gener-
ated based on inferred approvals). In some instances, the
pairings do not include ones based on inferred approvals
and/or affirmative approvals. The modified policy (e.g., and/
or modified parts of a policy) can be stored for subsequent
use.

In some implementations, parameters of a control policy
are updated proportional to the gradient of the parameter with
respect to the error of the behavioral output. In some imple-
mentations, the users commands may be interpreted as abso-
Iute commands, and may over ride the output of the control
policy. In such cases, the error can be the difference between
the command the policy generated and the command that the
user generated. In other cases, the commands can be inter-
preted as corrective commands, such that the commands
themselves are defined to be the error, as indicated by the user.
In some implementations, the parameters of the policy may
be updated by a learning rule that is the product of the error
term, a learning rate, and a scale factor proportional to esti-
mated standard deviation of the sign of the previous updates
for that parameter. In other implementations (e.g. multi-layer
neural networks), additional procedures may be used to
update parameters in a policy (e.g. back-propagation of error
to each layer in a neural network).

When it is determined that the modification criterion is not
satisfied at block 535 or after a policy’s modification, process
500 returns to block 505. New sensor data can then be evalu-
ated using the current policy.

FIG. 6 is a flow diagram of a process 600 for evaluating a
robot sensory-response policy for possible modification
according to an implementation of the present invention. Part
or all of process 600 can be implemented in a robot, a user
device or a remote server. Process 600 begins at block 605
where a trigger to evaluate a policy is detected. This detection
can include determining that specific conditions to evaluate a
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control policy are met. In some implementations, the trigger
can be based on detection of a time or conclusion of a time
period. For example, the policy may be adjusted at a defined
rate (e.g., 1 Hz, 10 Hz, 30 Hz, 60 Hz, 100 Hz, 200 Hz, 500 Hz,
1000 Hz, etc.). In some implementations, the trigger relates to
sensory data (e.g., that sensory data of a given type is avail-
able, that a change in sensory data of a given type is detected,
etc.) and/or to resources (e.g., that a power and/or memory
level crossed a threshold). The trigger may include perfor-
mance of one or more (or a threshold number) of actions. The
trigger may include detection of one or more (or a threshold
number) of corrective commands. The trigger may be fixed or
at least partly (or fully) definable by a user (e.g., to set an
evaluation temporal frequency or threshold number of cor-
rective commands to prompt evaluation).

Learning can happen iteratively upon arrival of sensory
data. In other implementations, a trigger is sent to evaluate a
much larger repository of sensory data, potentially not in
real-time (e.g., once per minute, hour, day or week), acting on
a batch of sensor data, or iterating over random subsets of a
batch. The latter process has an advantage of computing error
over one or more corrective commands in a batch, and may be
able to generalize better to reach a stable optimum, poten-
tially better for refining a policy. The former may learn faster
and can be more desirable when a user shapes the behavior of
a network by iteratively providing feedback with a series of
policies, focusing on one error category at a time.

Atblock 610, a set of sensory data is accessed. The sensory
data can include preprocessed (e.g. sensory algorithms) and/
or transformed (e.g. radial basis functions) representations of
the raw sensory data, as in block 505. A set may be composed
of'one or more samples from each relevant sensor source in a
time range defined in relation to a trigger (e.g. the samples
immediately preceding a trigger). Relevant sensor sources
may include one or more and potentially all available robotic
sensors, and the corresponding processed or transformed val-
ues of these sensors. A sensory data set may also include a
timeseries of values from a sensor, or a transform of a recent
timeseries (e.g. upon a trigger, the sensory data from an
accelerometer may include the integral of the acceleration
during the time period since the last trigger). The data may
also include the corrective commands of one or more users
(e.g., the sensory observation of the user completing a cor-
rective command, either directly via the user interface, or
indirectly from associated sensory data).

At block 615, one or more corresponding actions are iden-
tified. The corresponding actions can include, e.g., one or
more actions actually performed by a robot, an action initially
identified for performance based on sensor data, and/or an
action corresponding to a corrective command. Thus, actions
can include actions initially identified based on a current
policy and/or actions defined based on corrective input. Gen-
erally, the action(s) can be used to infer which action(s) were
acceptable to a user. For example, if the control policy had
proposed to rotate a vehicle clockwise with an angular veloc-
ity of 3 degrees per second, and the user provides a corrective
command of 3 degrees per second counter clockwise, it may
be inferred that the desired action was to not rotate the vehicle
at all. In other implementations, a control policy may act on
one or more output motors (e.g., to rotate a vehicle clockwise,
a head counter clockwise, and a move eyes upward), and a
corrective command may act upon one or more motors (e.g. a
corrective command to move the eyes downward). It can be
appreciated that the inferred desired action may be deter-
mined from a recent history of proposed actions, and a recent
history or corrective commands.
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In some implementations, the inference may take into
account the latency of a user’s response with respect to the
initiation of a salient robotic action, in order to ascertain the
desired mapping of from the sensory data at the time preced-
ing the salient action, to the delayed corrective user com-
mand. For example, when a user presses a button to correct a
robotic action, a predicable amount of time may have elapsed
between a robot initiating an action, and the user responding
to it (e.g. 300-600 msec to perceive and press a button).
During this time, the robot could have completed more
actions. Thus, the user’s response was probably not regarding
the most recent robotic action, but an action preceding that
(e.g. 600 msec ago), and the relevant sensory data for the
control policy may precede that (e.g. 600-900 msec ago).

It can be appreciated a user may also provide corrective
commands for predictions of errors (e.g. to turn before a robot
collides with a wall, because the current trajectory does not
account for it). Thus, corrective commands are not strictly for
modeling past actions, but also may serve as corrections of
anticipated actions. A user may continuously provide a
stream of corrective commands (e.g., the angle of a joystick
captured at 50 Hz), and these user commands may be predic-
tive ofthe corrective command required at a future moment in
time. For example, the user may be able to tell the vehicle is
not turning to avoid a future obstacle (e.g. by assuming the
robots past behavior of not turning is predictive if its future
behavior of not turning) and the user could proceed to provide
a corrective command to turn at the subsequent moment in
time. At that time of signal combination, the control signal
from the existing control policy (e.g. of not turning in the
given context) may be combined with the user’s corrective
command (e.g. to turn), resulting in a turn that avoids a future
collision.

At block 620, a relationship between the sensory data and
the corresponding action(s) is determined. In some imple-
mentations the relationship is estimated by iteratively apply-
ing changes to the control policy based on samples of sensory
motor-pairs that occurred (e.g. the preceding sensory data and
the previous action). Updates to the policy may be achieved
by changing parameters to algorithm, such that a representa-
tion of similar sensory data will yield similar motor
responses. In some implementations, a parameter may be
incremented or decremented by a learning rule (e.g. based on
the product of the magnitude of values in a vector, constitut-
ing a recent sensory representation, and a target vector). In
other implementations, the learning rule updates parameters
based on the gradient of the error of a target action (e.g.
back-propagation) as determined by the difference between
an action specified by an existing control policy and action
specified by the combination of a corrective command and the
control policy. In other implementations of determining the
relationship between sensory data and actions, updates to
parameters may include the additional product of a scalar
factor (e.g., a learning rate), the addition of a momentum term
(e.g., inducing a consistent direction of change based on past
applications of a parameter update), and/or the addition of a
noise term (e.g. allowing a parameter to drift according to a
diffusion process).

In some implementations, the process 620 of determining
the relationship between the sensory data and motor response
may include a prior of the smoothness (e.g., a Gaussian pro-
cess), and discontinuity (e.g., a Dirichlet process) in the target
control policy. The process may include a estimated param-
eter of the threshold of error necessary to induce a user to
provide a corrective behavior, simultaneously attempting to
construct a model ofthe target policy and the user’s corrective
behavior that maximizes the likelihood of the users observed
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corrections, given the sensory data and the control policy at
each moment in time. For example, when the user does not
respond, this provides evidence that the target policy is not
discernably different from the used policy, and when the user
does respond, this provides evidence that the used policy was
substantially different from the target policy in at least one
aspect (e.g., the aspect indicated by the corrective command).

At block 625, it is assessed whether the determined rela-
tionship is a sufficient improvement over an existing policy. If
the sensory data reliably predicts the corresponding action,
then the system may converge on a set of parameters that
predict the desired outcome. In some implementations, if
learning is enabled, all determined relationships to sensory
data may be deemed a sufficient improvement, resulting in a
modification of the policy for each action. In such cases, the
magnitude of the change may be influenced by a scalar factor
(e.g. relating the importance, as assessed by a cost function,
task rewards, or the assessment of preceding actions). In other
implementations, candidate changes to the control policy
may only be deemed a sufficient improvement if accompa-
nied by a corrective command in the sensory data. In other
implementations, changes in the control policy may be
deemed a sufficient if the score in an external test is passed
(e.g. the re-evaluation of a cost function associated with a
sensory motor policy remains higher than a threshold). If
some or part of the sensory data does not predict the desired
action, then the gradient of the parameter with respect to the
error may fluctuate with the variability of the sensory data,
potentially suppressing the updates of the parameter, and thus
avoiding the undesirable behavioral variability associated
with generating false associations in the sensory data, and/or
speeding up learning time. In some implementations, the
suppression of the magnitude of the updates of a parameter
may be accomplished by reducing the learning rate by a
running estimate of the standard deviation of the sign of the
error gradient for each parameter in the recent past.

The relationship between the sensory data and the desired
action can be measured by determining the parameters of a
control policy that minimize the error of the action inferred
and the action proposed by the control policy. One can appre-
ciate that minimizing this error relates to minimizing the
incidence and magnitude of corrective commands (e.g., if an
algorithm achieved perfect alignment with what a user
wanted, there would be no need to provide corrective com-
mands). In some implementations, a new control policy may
be generated based on a single new pairing of sensory data to
inferred desired action, plus the similar sensory contexts that
should provide similar motor responses. To ascertain if the
new control policy sufficiently captures a relationship, errors
may be computed upon previously observed sensory motor
pairs (e.g. broad generalization may impoverished what was
learned in a similar sensory context with different desired
motor response). In some implementations, most proposed
modifications of the policy may be accepted during initial
learning, but the criteria for acceptance (e.g., a reduction of
error for previously observed sensory motor pairs) may
become more stringent, or the magnitude of the allowed
change may be reduced with learning (e.g. as approximated
by time, or number of learning instances, or a performance
score). The similarity of the sensory context and motor con-
text which is affected by the proposed change to the control
policy, may be determined beforehand (e.g. a fixed Gaussian
width of impact in a sensory map or a motor map) or for each
case (e.g. a range of widths may be tested, allowing for a
broad or narrow sensory or motor generalization).

Choosing whether or not to incorporate a newly proposed
change to the existing control policy may involve assessing
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whether the new control policy would decreases the error.
This selection of a new control policy may also include other
terms involved in optimizing the entire search process. Since
solutions are not guaranteed to be convex, during a stochastic
iterative search it may be necessary to consider some pro-
posed parameter changes which increase the error. For
example, this may be done by including momentum terms, or
noise terms, along with following the gradient of the error.
Alternate loss functions (e.g., cross entropy, hinge loss) and
additional techniques (e.g., simulated annealing) may be
applied, as would be familiar to a person trained in the art.

Atblock 630, the sensory-response control policy is modi-
fied. In one implementation, modification may be performed
by updating the parameters of the algorithm (e.g. coefficients)
or parameters of the network (e.g. the weights of edges
between nodes), which implements the control policy. In
another implementation, a genetic algorithm may modify a
process that governs an algorithm at a meta-level (e.g. by
changing the topology of a network, or a normalization
method). In another implementation, a graphical model with
hyper-parameters over model parameters is chosen to fit the
data of observed sensory data and the user’s corrective com-
mands.

FIG. 7 is a flow diagram of a process 700 for identifying a
target action for a robot based on presence or absence of a user
corrective command according to an implementation of the
present invention. Part or all of process 700 can be imple-
mented in a robot, a user device or a remote server.

Process 700 begins at block 705 where a proposed action is
identified. The proposed action can include one initially iden-
tified by evaluating a policy using sensory data. A proposed
action may be the set of changes in joint angles that will
achieve a target force at some, one or all joints (e.g. that the
elbow should extend 1 degree and that the wrist should rotate
clockwise 4 degrees). A proposed action may be a target
velocity (e.g. 0.2 m/sec) or a target acceleration (e.g., 0.1
m/sec™2) for one or more motor outputs. A proposed action
may be to displace the robots position (e.g., to back up 10
feet).

At block 710 it is determined whether or not an unapplied
corrective command was received. If there are no corrective
commands, then process 710 continues to infer 715 that the
proposed action is the desired action. If there is a corrective
command, then 720 continues to identify the corrective
action.

At block 720, the corrective action(s) are identified. In
some implementations, corrective commands may have a
direct mapping to an effector (e.g. the velocity of a motor). In
other implementations, a command may be relative to some
other contextual state (e.g., for the robot to approach a target,
which may not be in front of it) and/or may impact many
effectors (e.g. the corrective command increase a quadrupe-
dal gate, which may involve the coordinated response of
many effectors). One, some or all unapplied corrective
actions may be applied at each time step (e.g. summating, or
overriding previous corrective commands). In some imple-
mentations, or depending on the context, a set of all unapplied
corrective actions may be summed (e.g., two corrective com-
mands to back up ten feet may be combined into a single
command to back up twenty feet). In other implementations,
or depending on the context, a most recent corrective action
may be selected (e.g., a sequence of unapplied corrective
commands to increase the velocity by 2 m/s, then 3 m/s, then
4 m/s may select the corrective command to increase the
velocity to 4 m/sec). In some implementations, desired

30

40

45

55

26

actions are communicated as a set point for a lower level
controller (e.g., a PID control loop that maintains position,
force, acceleration, etc.)

At block 725, the desired action is inferred to be a combi-
nation of the proposed action and the corrective actions(s).
The combination of the proposed action and the corrective
actions may be their sum. As can be appreciated, the require-
ment of a sum necessitates a numerical representation of an
action with a value. In some implementations, non-additive
operators may be used, such as logical operators (e.g. actions
may be treated as binary operators (e.g., true or false), allow-
ing for the appropriate logical operator to be selected (e.g. a
logical “and” or logical “or””)); multiplicative operators (e.g.,
the corrective command acts as a multiplicative gain of the
action); or operators that select the corrective action as the
desired action.

At block 740, the target action is associated with a high
weight. The high weight may be used to have a greater impact
on subsequent potential changes in the control policy (e.g. by
multiplying the proposed change in the policy’s parameters
by the associated weight, or by rejecting changes to the policy
if the associated weight is below a threshold). In can be
appreciated that subsequent processes may act upon, incre-
ment, decrement, or transform this weight, but that processes
735 and 740 may be used to establish an initial difference in
the weight. Additionally, it can be appreciated that the mag-
nitude of the high weight may differ based on the result of
process 710, and the details of 730.

At block 715, which occurs when no corrective command
is received from a user, the target action is defined as being
equal to the proposed action. The meaning of this definition
can be made clear by considering that the user had the oppor-
tunity to correct the target action, but made no such correc-
tion, implying tacit approval. In some implementations, the
user’s commands may be quick, discrete events (e.g. a button
press), and the presence or absence of a user command may
impact a region of time near the command (e.g., 200 msec
after the user provides a corrective command). Consequently,
even if the user is paying attention to the robot’s task, the
absence of correction for a brief interval may not constitute
approval of that interval, as user corrective commands may be
generated periodically with some spacing between them
(e.g., a button press every 500 msec).

Atblock 730, it is determined if there was an input that was
indicative that the user was present. In one implementation,
the user’s recent activity on a control interface (e.g. a smart
phone app, a browser interface, a tablet, a remote control, or
an executable software application) would indicate that the
user is present. Additional sources of evidence from the sen-
sors on a user interface (e.g., accelerometer, camera) and/or
from the sensors on a robot (e.g. motion sensor, face detec-
tion, gaze estimation, touch or proximity sensor) may be used
to determine if a user was present. It can also be appreciated
that this evidence may go beyond determining if a user was
present, including an estimate that the user was actively
attending to the robot’s task. In the later case, the system may
infer that the users chose not to correct the robot, and use the
lack of a correction is considered as a tacit agreement that the
robotic behavior was desired. In such cases, process 730 may
proceed to processes 740 and associate a high weight with the
target action definition. On the other hand, in the absence of
evidence that the user is present and attending to the task (or
if there is evidence that the user is not attending to the task),
then control proceeds to block 735.

At block 735, the target action definition is associated with
alow weight. This low weight indicates that a the relationship
between the robots sensory data and the subsequent action
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was likely not approved by the user. In some implementa-
tions, the weight may be so low that subsequent potential
modifications of the policy (e.g. process 600) will result in no
change, because the associated weight is below a threshold. In
can be appreciated that the details of block 730, may result in
a range of weights (e.g., a weight may be the negative expo-
nent of a Boltzmann distribution, defining a probability or
confidence), allowing for a continuum between low weights
in 735 and high weights in 740.

FIG. 8 is a flow diagram of a process 800 for defining a
policy using basis sets according to an implementation of the
present invention. Part or all of process 800 can be imple-
mented in a robot, a user device or a remote server. Process
800 begins at block 805 where a sensor basis set is identified.

At block 805, a sensor basis is identified, that is, a trans-
form of the raw sensory data into a sensor basis. For example,
raw sensor data may be pixels from one or more cameras,
audio from a one or more microphones, time series data from
one or more electromyograms, etc. In some implementations,
a sensory basis may be consistent with a basis in linear alge-
bra: a linearly independent spanning set of the raw data. In
other implementations, the basis may be the result of one or
more linear or non-linear transforms of the raw data, which
may be compressed, may not be invertible, and may not span
the space. A visual basis may also be the output of a hierarchy
of visual features encoding either raw pixel values, or supra-
threshold video wavelets filters, or some other filters. A sen-
sor basis may be the result of a sensory computational pipe-
line. The components of the pipeline (e.g. the linear
component of a video wavelet), may be optimized for the task
and environment of the robot (e.g. by encoding the set of
videos, or other sensor data, in a task-relevant database). A
sensor basis may independently span a space within a unique
sensory source (e.g. images from a camera, sounds from a
microphone, initial measurements from an IMU) or across
sources (e.g., combining data from multiple cameras, or com-
bining data from cameras and microphones and IMU, etc.)
For example, a time-extending data stream can be condensed
along a time dimension (e.g., to represent a maximum ampli-
tude and/or signal variation), or sensor data spanning multiple
modalities (sound, sight, acceleration, etc.) can be condensed
across the modalities (e.g., by projecting onto linear filters
that span these streams or detecting times of time-locked
events of above-threshold or high variation across data
streams). Sensory data may be processed by hierarchies of
nodes in a network (e.g. performing linear weighted opera-
tions along edge in a network and a potentially non-linear
functions with each node in the network).

At block 810, a command basis is identified, that is, a
transform of the raw action commands data into a command
basis. For example, raw command data may be voltages sent
to actuators, a time series of the derivative of values sent to set
points controlling the joint forces of a robot, etc. A command
basis provides a new representation of raw commands. In
principle it may span the same space, but it may also enable
the system to generalize better, such that similar commands
have similar representations. A command basis may be iden-
tified by a component analysis of past commands (e.g., an
analysis of the independent components of a database of
commands corresponding to known good behavior, and/or
known common mistakes in the training process, potentially
from the same robot, and potentially from the same task).

At block 815, a function is identified that relates the com-
mand basis set to the sensor basis set. The function relating
the basis sets maps an input sensor state to an output com-
mand state (e.g., a graphical model, a Bayesian model, an
energy model, a Boltzmann machine, a Gaussian process, a
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support vector machine, a liquid state machine, a polynomial
regression, a single layer perceptron, a multilayer perceptron,
a fern, a random forest, a biologically inspired software
model of the cerebellum or cortex or other brain area, or a
method that infers the input-output mapping of a function,
given a set of input-output pairs, and/or a set of assumptions
about the input, or some combination thereof).

At block 820, a control policy is defined that provides a
map from raw sensor data to raw commands, relying on the
sensor basis, the command basis, and the function between
these bases. Changes to the policy (e.g. when the policy is
modified 630) may involve modifying the function mapping
between the bases, but need not change the basis themselves.
Changes to the policy may change the bases as well; however,
between the sensor basis, the motor basis, and the function
relating them, the changes may be applied at different times-
cales (e.g., the changes may be applied faster or slower, with
greater or lesser impact per modification) or with different
permanence (e.g., the changes may decay or persist over
varying durations).

It will be appreciated that disclosures herein referring to a
robotic action can, in some implementations, also be applied
to digital actions (e.g. the posting of a photo; the rating of a
topic, establishment or service).

It will be appreciated that disclosures herein referring to a
corrective commands can, in some implementations, also
include facial expressions (e.g. a grimace, a furrowed brow, a
smile) or social communications (e.g. an engaged body pos-
ture, the location and duration of a user’s gaze, a hand ges-
ture) or the manipulation of the robots body (e.g., the posi-
tioning of a robots join angle to indicate that a particular pose,
or postural sequence should be obtained; touch contact with a
robots body potentially indicating a location and moment of
error and/or a change in behavior that would reduce the error).

As robots become more prevalent in society, it will be
increasingly more important how we indicate the user’s intent
of a task to be performed. In the long run, the field may
establish protocols of natural human interaction, capable of
guiding robotic behavior. However, it is daunting to create a
software solution with a complete understanding of the envi-
ronment, the consequences of actions, the social dynamics of
people, and the intentions of a user. A powerful step in facili-
tating human-robotic interaction is to provide a platform with
a consistent interface for users, and that will scale with the
computational resources of robotics. We propose a frame-
work of corrective commands, that enable a user to intuitively
indicate what a robot should do in real time. The user’s
understanding of the world can provide a behavioral scaffold-
ing; the user’s understanding of the environment, the conse-
quences of actions, the social dynamics of people, and their
own intentions will become embedded in the behavioral
dynamics of the robot. Importantly, we describe a software
solution, tailored to the corrective commands of users,
capable of learning a mapping form the robots sensory envi-
ronment to the commands it should generate. Not only can a
human user correct robotic errors in real time, but the results
of past corrective commands can be leveraged to learn the
correct behavior.

Implementations of the present invention, e.g., in methods,
apparatus, computer-readable media and the like, can be real-
ized using any combination of dedicated components and/or
programmable processors and/or other programmable
devices. The various processes described herein can be imple-
mented on the same processor or different processors in any
combination. Where components are described as being con-
figured to perform certain operations, such configuration can
be accomplished, e.g., by designing electronic circuits to
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perform the operation, by programming programmable elec-
tronic circuits (such as microprocessors) to perform the
operation, or any combination thereof. Further, while the
implementations described above may make reference to spe-
cific hardware and software components, those skilled in the
art will appreciate that different combinations of hardware
and/or software components may also be used and that par-
ticular operations described as being implemented in hard-
ware might also be implemented in software or vice versa.

Computer programs incorporating various features of the
present invention may be encoded and stored on various
computer readable storage media; suitable media include
magnetic disk or tape, optical storage media such as compact
disk (CD) or DVD (digital versatile disk), flash memory, and
other non-transitory media. Computer readable media
encoded with the program code may be packaged with a
compatible electronic device, or the program code may be
provided separately from electronic devices (e.g., via Internet
download or as a separately packaged computer-readable
storage medium).

What is claimed is:
1. A method for controlling actions of robots, the method
comprising:
identifying, at a device that includes a processor, a first
context-variable value for a context variable detected by
a robot at a first sensory-detection time;
accessing, at the device, a policy comprising one or more
parameters configured to map the context variable to a
robot action variable;
determining that a first robot action characterized by a first
value of the robot action variable was performed at an
action time in response to detection of the first context-
variable value, the first robot action being in accordance
with application of the policy;
determining that a user input was received at an input time
corresponding to the action time, wherein user input data
derived from the user input at least partly defines a
corrective command that specifies a corrective robot
action for physical performance, the user input being
indicative of at least partial dissatisfaction with the first
robot action;
modifying the policy based on the corrective command and
the first context-variable value; and
causing the modified policy to be used to:
determine a second robot action characterized by a sec-
ond value of the robot action variable based on a
second context-variable value for the context variable
detected at a second sensory-detection time; and
initiate performance of the second robot action in accor-
dance with the second value of the robot action vari-
able.
2. The method of claim 1, further comprising:
identifying a third context-variable value for the context
variable, the third context-variable value being detected
at a third sensory-detection time that is after the second
sensory-detection time;
determining that the robot performed a third action in
response to the third context-variable value, the third
action being in accordance with application of the
accessed policy; and
inferring that the third action was satisfactory based on a
lack of input data east partly defining a corrective com-
mand corresponding to the third action;
wherein the modification of the policy is further based on
the third context-variable value.
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3. The method of claim 1, further comprising:

identifying initial user input data derived from an initial
user input received, the initial user input data at least
partly defining an initial command that specifies an ini-
tial robot action for the robot to physically perform;

identifying an initial context-variable value for the context
variable detected by the robot at an initial sensory-de-
tection time that corresponds to an initial input time; and

determining the accessed policy based on the initial com-
mand and the first context-variable value for the context
variable.

4. The method of claim 1, further comprising:

determining the first value of the robot action variable

based on the first context-variable value for the context
variable; and

initiating the first robot action in accordance with the first

value of the robot action variable.

5. The method of claim 1, wherein the modifying of the
policy further comprises using a learning model.

6. The method of claim 1, wherein the corrective command
is indicative of a magnitude of action.

7. The method of claim 1, wherein the robot includes the
device and further includes a motor used to perform at least
part of the first robot action or the second robot action.

8. The method of claim 1, wherein the user input includes
input received at an interface at a user device remote from the
robot.

9. A system, comprising:

one or more data processors; and

a non-transitory computer readable storage medium con-

taining instructions which when executed on the one or
more data processors, cause the processor to:
identify a first context-variable value for a context vari-
able detected by a robot at a first sensory-detection
time;
access a policy comprising one or more parameters con-
figured to map the context variable to a robot action
variable;
determine that a first robot action characterized by a first
value of the robot action variable was performed at an
action time in response to detection of the first con-
text-variable value, the first robot action being in
accordance with application of the policy;
determine that a user input was received at an input time
configured to correspond to the action time, wherein
user input data derived from the user input at least
partly defines a corrective command that specifies a
corrective robot action for physical performance, the
user input being indicative of at least partial dissatis-
faction with the first robot action, wherein the correc-
tive command defined by the user input data is con-
figured to minimize an error associated with the robot
action;
modify the policy based on the corrective command and
the st context-variable value; and
cause the modified policy to be used to:
determine a second robot action characterized by a
second value of the robot action variable based on a
second context-variable value for the context vari-
able detected at a second sensory-detection time;
and
initiate performance of the second robot action in
accordance with the second value of the robot
action variable.

10. The system of claim 9, wherein the instructions further

cause the processor to:
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identify a third context-variable value for the context vari-
able, the third context-variable value being detected at a
third sensory-detection time that is after the second sen-
sory-detection time;

determine that the robot performed a third action in

response to the third context-variable value, the third
action being in accordance with application of the
accessed policy; and

infer that the third action was satisfactory based on alack of

input data least partly defining a corrective command
corresponding to the third action;

wherein the modification of the policy is further based on

the third context-variable value.
11. The system of claim 9, wherein the instructions further
cause the processor to:
identify initial user input data derived from an initial user
input received, the initial user input data at least partly
defining an initial command that specifies an initial
robot action for the robot to physically perform;

identify an initial context-variable value for the context
variable detected by the robot at an initial sensory-de-
tection time that corresponds to the initial input time;
and

determine the accessed policy based on the initial com-

mand and the first context-variable value for the context
variable.

12. The system of claim 9, wherein the instructions further
cause the processor to:

determine the first value of the robot action variable based

on the first context-variable value for the context vari-
able; and

initiate the first robot action in accordance with the first

value of the robot action variable.
13. The system of claim 9, wherein the policy is configured
to be modified by use of a learning model.
14. The system of claim 9, wherein the corrective com-
mand is indicative of a magnitude of action.
15. The system of claim 9, wherein the robot includes the
system and further includes a motor used to perform at least
part of the first robot action or the second robot action.
16. The system of claim 9, wherein the user input includes
input received at an interface at a user device remote from the
system.
17. A computer-program product tangibly embodied in a
non-transitory machine-readable storage medium, including
instructions configured to cause one or more data processors
to:
identify a first context-variable value for a context variable
detected by a robot at a first sensory-detection time;

access a policy comprising one or more parameters con-
figured to map the context variable to a robot action
variable;

determine that a first robot action characterized by a first

value of the robot action variable was performed at an
action time in response to detection of the first context-
variable value, the first robot action being in accordance
with application of the policy;

determine that a user input was received at an input time

corresponding to the action time, wherein user input data
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derived from the user input at least partly defines a
corrective command that specifies a corrective robot
action for physical performance, the user input being
indicative of at least partial dissatisfaction with the first
robot action;

modify the policy based on the corrective command and

the first context-variable value; and

cause the modified policy to be used to:

determine a second robot action characterized by a sec-
ond value of the robot action variable based on a
second context-variable value for the context variable
detected at a second sensory-detection time; and

initiate performance ofthe second robot action in accor-
dance with the second value of the robot action vari-
able;

wherein the second value of the robot action variable com-

prises a combination of the first robot action and the
corrective action defined by the user input data, the
combination being configured to result in a desired robot
action.

18. The computer-program product of claim 17, wherein
the instructions are further configured to cause the one or
more data processors to:

identify a third context-variable value for the context vari-

able, the third context-variable value being detected at a
third sensory-detection time that is after the second sen-
sory-detection time;

determine that the robot performed a third action in

response to the third context-variable value, the third
action being in accordance with application of the
accessed policy; and

infer that the third action was satisfactory based on alack of

input data at least partly defining a corrective command
corresponding to the third action;

wherein the modification of the policy is further based on

the third context-variable value.
19. The computer-program product of claim 17, wherein
the instructions are further configured to cause the one or
more data processors to:
identify initial user input data derived from an initial user
input received, the initial user input data at least partly
defining an initial command that specifies an initial
robot action for the robot to physically perform;

identify an initial context-variable value for the context
variable detected by the robot at an initial sensory-de-
tection time that corresponds to the initial input time;
and

determine the accessed policy based on the initial com-

mand and the first context-variable value for the context
variable.

20. The computer-program product of claim 17, wherein
the instructions are further configured to cause the one or
more data processors to:

determine the first value of the robot action variable based

on the first context-variable value for the context vari-
able; and

initiate the first robot action in accordance with the first

value of the robot action variable.
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